
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 1

Argobots: A Lightweight Low-Level
Threading and Tasking Framework

Sangmin Seo, Abdelhalim Amer, Pavan Balaji, Cyril Bordage, George Bosilca, Alex Brooks,
Philip Carns, Adrián Castelló, Damien Genet, Thomas Herault, Shintaro Iwasaki,
Prateek Jindal, Laxmikant V. Kalé, Sriram Krishnamoorthy, Jonathan Lifflander,

Huiwei Lu, Esteban Meneses, Marc Snir, Yanhua Sun, Kenjiro Taura, and Pete Beckman

Abstract—In the past few decades, a number of user-level threading and tasking models have been proposed in the literature to
address the shortcomings of OS-level threads, primarily with respect to cost and flexibility. Current state-of-the-art user-level threading
and tasking models, however, either are too specific to applications or architectures or are not as powerful or flexible. In this paper, we
present Argobots, a lightweight, low-level threading and tasking framework that is designed as a portable and performant substrate for
high-level programming models or runtime systems. Argobots offers a carefully designed execution model that balances generality of
functionality with providing a rich set of controls to allow specialization by end users or high-level programming models. We describe
the design, implementation, and performance characterization of Argobots and present integrations with three high-level models:
OpenMP, MPI, and colocated I/O services. Evaluations show that (1) Argobots, while providing richer capabilities, is competitive with
existing simpler generic threading runtimes; (2) our OpenMP runtime offers more efficient interoperability capabilities than production
OpenMP runtimes do; (3) when MPI interoperates with Argobots instead of Pthreads, it enjoys reduced synchronization costs and
better latency-hiding capabilities; and (4) I/O services with Argobots reduce interference with colocated applications while achieving
performance competitive with that of a Pthreads approach.

Index Terms—Argobots, user-level thread, tasklet, OpenMP, MPI, I/O, interoperability, lightweight, context switch, stackable scheduler.

F

1 INTRODUCTION

E FFICIENTLY supporting massive on-node parallelism de-
mands highly flexible and lightweight threading and

tasking runtimes. OS-level threads have been long recog-
nized to be inadequate in this regard, primarily owing to
their heavy-handed approach in managing arbitration and
synchronization, as well as their inflexibility in adapting to
the specialization requirements of specific applications. As
a result, over the past few decades, a number of user-level
threading and tasking abstractions have emerged as more
practical alternatives.

• S. Seo, A. Amer, P. Balaji, P. Carns, and P. Beckman are with Argonne
National Laboratory. E-mail: {sseo,aamer,balaji,carns,beckman}@anl.gov

• C. Bordage is with Inria Bordeaux. E-mail: cyril.bordage@inria.fr
• A. Brooks, P. Jindal, L. Kalé, and M. Snir are with the University of Illinois

at Urbana-Champaign. E-mail: {brooks8,jindal2,kale,snir}@illinois.edu
• G. Bosilca, D. Genet, and T. Herault are with the University of Tennessee,

Knoxville. E-mail: {bosilca,dgenet,herault}@icl.utk.edu
• S. Iwasaki and K. Taura are with the University of Tokyo. E-mail:
{iwasaki,tau}@eidos.ic.i.u-tokyo.ac.jp

• A. Castelló is with Universitat Jaume I. E-mail: adcastel@uji.es
• S. Krishnamoorthy is with Pacific Northwest National Laboratory.

E-mail: sriram@pnnl.gov
• J. Lifflander is with Sandia National Laboratories. E-mail:

jliffl2@illinois.edu
• H. Lu is with Tencent. E-mail: huiweilv@tencent.com
• E. Meneses is with Costa Rica National High Technology Center and the

Costa Rica Institute of Technology. E-mail: esteban.meneses@acm.org
• Y. Sun is with Google. E-mail: sun51@illinois.edu
• S. Seo, A. Amer, and E. Meneses are IEEE members.
• L. Kalé and M. Snir are IEEE fellows.
• P. Balaji and S. Krishnamoorthy are IEEE senior members.
• A. Brooks and A. Castelló are IEEE graduate student members.
• P. Beckman is an IEEE affiliate.

Manuscript received July 28, 2017; revised XXX XX, XXXX.

These lightweight abstractions have successfully served
as building blocks for several parallel programming systems
and applications. Current state of the art, however, suffers
from shortcomings related to how these abstractions handle
generality and specialization. Existing runtimes tailored for
generic use [1]–[9] are suitable as common frameworks to fa-
cilitate portability and interoperability but offer insufficient
flexibility to efficiently capture higher-level abstractions.
This lack of flexibility often takes the form of transpar-
ent decisions on behalf of the user that incur undesired
costs or inefficient resource usage. For instance, these run-
times implement transparent and rigid scheduling decisions
(e.g., random work stealing) that incur costs (e.g., shared
thread pool accesses) and provide no guarantee for optimal
scheduling. Unfortunately, these runtimes provide little to
no control to the user to overcome these inefficiencies.
Specialized runtimes are oriented to a specific environment,
for example, runtimes targeted at OS task management
[10], [11], network services [12]–[14], compiler frameworks
[15], specific hardware [16], and parallel programming run-
times [17]–[20]. These are heavily customized with a rich
set of capabilities. Such abstractions, however, are virtually
unusable outside the target environment because they were
not meant for general use. They are often not portable
(e.g., targeted to specific hardware) and do not offer suffi-
cient user control outside the target environment. The Intel
OpenMP Runtime [17] and Nanos++ [18], for instance, are
efficient backend runtimes for OpenMP compilers but are
hardly usable outside this scope.

We propose, in this paper, to fill this gap with Argobots,
a lightweight, low-level threading and tasking framework.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 2

Argobots not only offers a portable library interface that is
broadly applicable to a number of target domains but also
provides a rich set of controls to allow specialized runtime
management by the user. The first goal of Argobots is to
expose sufficient information and capabilities for users to
efficiently map high-level abstractions to low-level imple-
mentations. The second goal is to allow different software
packages to interoperate through Argobots as a lightweight
substrate instead of relying on OS-level interoperation.

Argobots honors this high degree of expressibility
through three key aspects. First, Argobots distinguishes
between the requirements of different work units, which are
the most basic manageable entities. Work units that require
private stacks and context-saving capabilities, referred to
as user-level threads (ULTs, also called coroutines or fibers),
are fully fledged threads usable in any context. Tasklets do
not require private stacks. They are more lightweight than
ULTs because they do not incur context saving and stack
management overheads. Tasklets, however, are restrictive;
they can be executed only as atomic work units that run
to completion without context switching. This distinction
allows users to create the work unit type that fits their
purpose. When tasklets are sufficient, performance gains
over ULTs are certain. Second, work units execute within
OS-level threads, which we refer to as execution streams
(ESs). Unlike existing generic runtimes, ESs are exposed to
and manageable by users. This added level of control offers
opportunities for affinity and interoperability improvements
(e.g., avoiding oversubscription of OS-level threads). Third,
Argobots allows full control over work unit management.
Users can freely manage scheduling and mapping of work
units to ESs and achieve the desired behavior.

In order to ensure fast critical paths despite the rich set
of capabilities, Argobots was designed in a modular way to
offer configuration knobs and a rich API that allow users to
trim unnecessary costs. An in-depth critical path characteri-
zation study is also provided, which involved investigating
every cache miss and translation lookaside buffer (TLB) miss
that occurs on critical paths. In a fully optimized state, Argo-
bots achieved unprecedented performance in the context of
lightweight runtimes. Indeed, evaluating Argobots against
several highly performing generic lightweight threading
libraries, such as Qthreads [5] and MassiveThreads [4],
showed that Argobots incurs little overhead and scales
better than the other libraries while achieving sustainable
performance.

To evaluate the adequacy of Argobots as a substrate run-
time and its interoperability capabilities, we present proto-
type integrations with the most widely used programming
systems in high-performance computing (HPC)—OpenMP
and MPI—as well as a use case in colocated I/O services.
Our OpenMP runtime over Argobots avoids OS-level thread
interoperability issues that arise from nesting OpenMP-
based software. We demonstrate that OpenMP over Argo-
bots can scale significantly better than existing OpenMP
runtimes with synthetic benchmarks and in a fast multipole
method (FMM) implementation that suffers from nested
parallelism when offloading computation to an external
OpenMP-based parallel library. We also show that when
interoperating with MPI, Argobots can enable reduced syn-
chronization costs and better latency-hiding capabilities,

compared with Pthreads. Moreover, unlike with Pthreads,
we show that I/O services over Argobots can readily de-
couple tuning the level of CPU and I/O concurrency. Con-
sequently, the resulting I/O services lower interference with
colocated applications by reducing CPU consumption while
achieving performance competitive with that of a Pthreads
approach.

2 DESIGN AND IMPLEMENTATION OF ARGOBOTS

This section presents the key components of Argobots.

2.1 Execution Model

Figure 1 illustrates the execution model of Argobots. Two
levels of parallelism are supported: ESs and work units.
An ES maps to one OS thread, is explicitly created by the
user, and executes independently of other ESs. A work unit
is a lightweight execution unit, a ULT or a tasklet, that
runs within an ES. There is no parallel execution of work
units within a single ES, but work units across ESs can be
executed in parallel. Each ES is associated with its own
scheduler that is in charge of scheduling work units ac-
cording to its scheduling policy. The scheduler also handles
asynchronous events periodically. Argobots provides some
basic schedulers, and users can also write their own.

ULTs and tasklets are associated with function calls
and execute to completion. However, they differ in subtle
aspects that make each of them suited for distinct program-
ming motifs. A ULT has its own stack region, whereas a
tasklet borrows the stack of its host ES’s scheduler. A ULT
is an independent execution unit in user space and provides
standard thread semantics at a low context-switching cost.
ULTs are suitable for expressing parallelism in terms of
persistent contexts whose flow of control can be paused and
resumed. Unlike OS-level threads, ULTs are not intended
to be preempted. They cooperatively yield control, for ex-
ample, when they wait for remote data or let other work
units make progress for fairness. A tasklet is an indivisible
unit of work with dependence only on its input data, and
it typically provides output data upon completion. Tasklets
do not yield control and run to completion before returning
control to the scheduler that invoked them.

2.2 Scheduler

Argobots provides an infrastructure for stackable or nested
schedulers, with pluggable scheduling policies, while ex-
ploiting the cooperative nonpreemptive activation of work
units. Localized scheduling policies such as those used in
current runtime systems, while efficient for short execution,
are unaware of global policies and priorities. Plugging in
custom policies enables higher levels of the software stack
to use their special policies while Argobots handles the low-
level scheduling mechanisms. In addition, stacking sched-
ulers empowers the user to switch schedulers when mul-
tiple software modules or programming models interact in
an application. For example, when the application executes
an external library that has its own scheduler, it pauses
the current scheduler and invokes the library’s scheduler.
Doing so activates work units associated with the invoked

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 3

Pool

U

ULT

T

Tasklet

E

Event

ES1

SM1

U

EE

U

S1

S2

T

T

T

T

U U T T U T

ES2

SM2EE

U

U

U

T

T

T

S

Scheduler

PS

PM11

PE1

P21P11

PE2

PM22PM21

...

ESn

Fig. 1: Argobots execution model. An ES (curved arrow) is a sequential
instruction stream that consists of one or more work units. SM denotes
the ES’s main scheduler. SM1 in ES1 has one associated private pool,
PM11, and SM2 in ES2 has two private pools, PM21 and PM22.
Arrows indicate associations between schedulers and pools. PS is
shared between ES1 and ES2, and thus both SM1 in ES1 and SM2

in ES2 can access the pool to push or pop work units. PE denotes
an event pool. S1 and S2 in PM11 are stacked schedulers that will be
executed by the main scheduler SM1.

scheduler. The control returns to the original scheduler upon
completion.

Argobots allows each ES to have its own schedulers. To
execute work units, an ES has at least one main scheduler
(SM). A scheduler is associated with one or more pools
where ready ULTs and tasklets are waiting for their execu-
tion. Pools have an access property, for example private to
an ES or shared between ESs. Sharing or stealing work units
among schedulers (or ESs) is done through shared pools.
Each ES also has a special event pool (PE) for asynchronous
events. The event pool is meant for lightweight notification.
It is periodically checked by a scheduler to handle the
arrival of events (e.g., messages from the network).

When a work unit is in a pool that is associated with
a running or stacked scheduler, it is considered ready to
execute. Thus, Argobots does not control dependencies be-
tween work units. The control is done in the application
itself through mechanisms provided by Argobots, such as
waiting for completion and synchronization. In order to
ensure a particular affinity of a work unit to some data, the
application can use the appropriate pool when pushing the
work unit. Thus, the work unit will be executed on the ES
(or a group of ESs) that pops it from that pool.

Stacking schedulers is achieved through pushing sched-
ulers into a pool. In other words, schedulers in a pool are
regarded as schedulable units (e.g., S1 in Figure 1 is a
stacked scheduler that will be executed by SM1). When a
higher-level scheduler pops a scheduler from its pool, the
new scheduler starts its execution (i.e., scheduling). Once it
completes the scheduling, control returns to the scheduler
that started the execution. To give control back to the parent
scheduler, a scheduler can also yield. To support plugging
in different scheduling policies, all schedulers, including the
main scheduler, and pools are replaceable by user-provided
alternatives.

2.3 Primitive Operations
Argobots defines primitive operations for work units. Since
tasklets are used for atomic work without suspending,
most operations presented here—except creation, join, and
migration—apply only to ULTs.

Creation. When ULTs or tasklets are created, they are
inserted into a specific pool in a ready state. Thus, they will
be scheduled by the scheduler associated with the target
pool and executed in the ES associated with the scheduler.
If the pool is shared with more than one scheduler and
the schedulers run in different ESs, the work units may be
scheduled in any of the ESs.

Join. Work units can be joined by other ULTs. When a
work unit is joined, it is guaranteed to have terminated.

Yield. When a ULT yields control, the control goes to the
scheduler that was in charge of scheduling in the ES at the
point of yield time. The target scheduler schedules the next
work unit according to its scheduling policy.

Yield to. When a ULT calls yield to, it yields control to
a specific ULT instead of the scheduler. Yield to is cheaper
than yield because it bypasses the scheduler and eliminates
the overhead of one context switch. Yield to can be used
only among ULTs associated with the same ES.

Migration. Work units can be migrated between pools.
Synchronizations. Mutex, condition variable, future,

and barrier operations are supported, but only for ULTs.

2.4 Implementation
We have implemented Argobots in the C language.1 An ES
is mapped to a Pthread and can be bound to a hardware
processing element (e.g., CPU core or hardware thread).
Context switching between ULTs can be achieved through
various methods, such as ucontext, setjmp/longjmp with
sigaltstack [21], or Boost library’s fcontext [22]. Our
implementation exploits fcontext by default and provides
ucontext as an alternative when the user requires pre-
serving the signal mask between context switches. Indeed,
fcontext is significantly faster than ucontext mostly be-
cause it avoids preserving the signal mask, which requires
expensive system calls. The user context includes CPU
registers, a stack pointer, and an instruction pointer. When
a ULT is created, we create a ULT context that contains a
user context, a stack, the information for the function that
the ULT will execute, and its argument. A stack for each
ULT is dynamically allocated, and its size can be specified
by the user. The ULT context also includes a pointer to the
scheduler context in order to yield control to the scheduler
or return to the scheduler upon completion. Since a tasklet
does not need a user context, it is implemented as a simple
data structure that contains a function pointer, argument,
and some bookkeeping information, such as an associated
pool or ES. Tasklets are executed on the scheduler’s stack
space.

A pool is a container data structure that can hold a set of
work units and provides operations for insertion and dele-
tion. Argobots defines the interface required to implement
a pool, and our implementation provides a first-in, first-
out (FIFO) queue as a pool implementation. A scheduler is

1. The reader can find the Argobots implementation and examples at
https://github.com/pmodels/argobots.

https://github.com/pmodels/argobots

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 4

implemented similarly to a work unit; it has its own function
(i.e., scheduling function) and a stack. Since a scheduler is
regarded as a schedulable unit, it can be inserted into a pool
and executed as a work unit.

Argobots relies on cooperative scheduling of ULTs to
improve resource utilization. That is, a ULT may voluntarily
yield control when idle in order to allow the underlying
ES to make progress on other work units. Idling occurs
when executing blocking operations. Yielding control can be
achieved either implicitly, through Argobots synchroniza-
tion primitives, or explicitly by calling yield or yield_to.
Some Argobots synchronization primitives, such as mutex
locking or thread join operations, automatically yield con-
trol when blocking is inevitable. ULTs that interact with
external blocking resources (such as network or storage
devices) are expected to explicitly context switch by using
yield or yield_to. Furthermore, synchronization primi-
tives can be used to resume execution upon completion of
external resource operations. This capability will be illus-
trated in Section 5.3 when coupled with I/O operations.

3 CRITICAL PATH COST ANALYSIS

Argobots is intended for fine-grained dynamic environ-
ments, where work unit creation, destruction, and context-
switching take place at high frequencies. The rich set of
capabilities that Argobots offers, however, can clutter and
slow the critical path of Argobots applications. Indeed, sup-
porting such capabilities would require longer code paths
and more complex data layouts than a simpler threading
runtime would. To allow high flexibility without sacrific-
ing performance, Argobots offers build-time configuration
features and advanced API routines that allow captur-
ing efficiently higher-level software requirements. When
these features are exploited properly, Argobots’ critical path
can be competitive or outperform state-of-the-art simpler
threading runtimes.

This section presents a cost analysis of basic work unit
management primitives, such as creation, joining, and de-
struction operations, which are found on the critical path
of Argobots applications. The goal is for the Argobots user
to relate features to costs on the critical path as well as
understand the favorable conditions that would bring down
these costs. We present experimental results only with ULTs;
similar observations apply to tasklets. The exceptions are
the join features in Section 3.4, which are applicable only to
ULTs since tasklets are not allowed to join other work units,
and the data structure organization in Section 3.3, which is
insensitive for a tasklet descriptor because it can fit in one
cache line.

Methodology. We follow an incremental approach that
starts with a basic Argobots implementation and then grad-
ually incorporates features that lower the costs on the critical
path. Each step involves a cost analysis and the correspond-
ing feature to lower the cost. In the following, we begin
by describing our testbed, a simple microbenchmark that
allows us to profile in isolation ULT operations, and then
present details about the baseline Argobots implementation.

3.1 Experimental Setup
For all experiments, we used a 36-core (72 hardware threads)
machine, which has two Intel Xeon E5-2699 v3 (2.30 GHz)

CPUs and 128 GB of memory and runs Red Hat Linux
(kernel 3.10.0-327.el7.x86 64) 64-bit. We used gcc 4.8.5 for
compiling and PAPI [23] for collecting the necessary hard-
ware counter values.

3.2 Baseline and Benchmark Description
Baseline. The baseline Argobots implementation is charac-
terized by use of the default system memory management
(i.e., system malloc/free and normal pages); semantic
organization of data structures (that is, data fields are
grouped according to their functionality); a fully fledged
context switch mechanism; and a shared pool. Moreover, all
Argobots features are build-time enabled.

Benchmark. For simplification, the analysis focuses on
spawning and joining ULTs on one ES. That is, we create
a large number of ULTs and push them to a shared pool
in a bulk-synchronous fashion, join them by the main ULT,
destroy them, and repeat the process over 1,000 iterations.
Each ULT is created with 16 KiB of stack space. Although
this section uses a single ES, our experiments showed sim-
ilar observations when scaling ESs up to 72; for brevity, we
omit including these results. In the following, we report
latency results in CPU cycles and show memory-related
hardware counters where needed.

 0

 1000

 2000

 3000

 4000

 5000

 6000

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

L
a

te
n

c
y
 (

c
y
c
le

s
)

Number of ULTs

Create Join Free

Fig. 2: Performance of the baseline implementation. Create, Join, and
Free represent the time spent in creating, executing and joining, and
destroying ULTs, respectively. Each bar represents the average latency
(arithmetic mean) per iteration per ULT. The standard deviation of the
mean is less than 5%.

Figure 2 shows the performance of our baseline imple-
mentation according to the number of ULTs that are created
in the benchmark. For example, forking and joining 64 ULTs
take 2,443 cycles (1.064 µs) for each ULT, where 1,837, 212,
and 394 cycles are spent in Create, Join, and Free, respectively.
In most cases, about 75% of the time is used for creation,
and about 15% of the latency is used for destruction. These
results hint at memory management issues and are investi-
gated in the next subsection.

3.3 Memory Management
Work units in Argobots are meant for dynamic fine-grained
concurrency. Thus, thread creation and destruction would
be frequent. Further analysis of Create and Free reveals that
memory allocation and deallocation contribute to 93% and
84% of each latency, respectively. These significant over-
heads of memory management come from the fact that
the baseline implementation relies on malloc and free

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 5

10
1

10
2

10
3

10
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

L
a

te
n

c
y
 p

e
r

U
L

T
 (

c
y
c
le

s
)

Number of ULTs

Create

2
6

2
8

2
10

2
12

2
14

2
16

2
18

Join

2
6

2
8

2
10

2
12

2
14

2
16

2
18

Free

Baseline
MemPool

HugePages

Fig. 3: Effects of using memory pools and huge pages.

functions provided in glibc to handle dynamic memory
allocation.

We developed a custom memory allocator that reduces
system calls and thread synchronization overheads. This
allocator maintains a memory pool that grows in size with
the number of spawned work units. After a work unit
terminates, its memory resources are added to the pool or re-
turned to the system if the pool has reached a certain thresh-
old. Since the scalability of a dynamic memory allocator is
limited mostly by synchronizations on the shared heap [24],
each ES keeps a private memory pool for allocating work
units, in order to reduce the number of accesses to the global
heap. Basically, if creation and destruction of a work unit
occur in the same ES, no synchronization is involved. If
the creation and destruction of a work unit take place on
different ESs, however, we combine fast-path accesses to
local memory pools for scalability and slow-path accesses to
remote or global memory pools for load balancing to avoid
the heap-blowup problem [25]. Our memory management
system also allows the possibility of reducing memory address
translation overheads by configuring Argobots to use huge
pages. This is achieved by allocating 2 MiB huge pages,
instead of the normal 4 KiB pages, by using mmap until
the system runs out of huge pages for explicit allocation.
Then, the system reverts to the transparent huge page
support [26]. This allows eliminating most of the TLB misses
and the corresponding expensive page walks and eventual
memory accesses to the page table.

We experimented with the new memory management
system and show the latency results in Figure 3. The results
are presented incrementally, with the huge pages feature
(HugePages) implemented on the top of the custom alloca-
tor MemPool. We observe a substantial benefit of the new
memory management system, especially for Create and Free,
compared with Baseline. Join is less sensitive to these changes
because object creation and destruction do not take place on
its critical path. We found out, however, that it is sensitive
to the layout of critical data structures. Our investigation
showed that a performance-oriented data layout2 could fit
critical data in fewer cache lines than a semantic-oriented
layout3 could. Our experiments showed that this optimiza-
tion lowers the Join latency by up to 7%, which corresponds
to the reduction in last-level cache (LLC) misses.

2. A layout that focuses on gathering data according to their contri-
bution to the scheduling critical path.

3. A layout that focuses on gathering data with close semantics or
functionality (e.g., identification, scheduling, migration).

 50

 100

 150

 200

 250

 300

 350

 400

2
6

2
8

2
10

2
12

2
14

2
16

2
18

L
a

te
n

c
y
 p

e
r

U
L

T
 (

c
y
c
le

s
)

Number of ULTs

Join Latency

2
6

2
8

2
10

2
12

2
14

2
16

2
18

 0

 1

 2

 3

 4

 5

 6

L
L

C
 M

is
s
e

s
 p

e
r

U
L

T

LLC Misses

Baseline
LastCtxSkip

SchedBypass
JoinMany

Fig. 4: Effects of the performance improvement techniques for Join.

3.4 Context Switching

Suspending and resuming control of a thread are frequent
operations in threaded environments when yielding control
explicitly or implicitly through blocking or synchronization
operations. In this section, we investigate the fundamental
costs of context switching in Argobots in the context of the
Join operation and hint to other operations, such as yield
when appropriate.

Context of a Terminating ULT. Context switching com-
prises two steps: saving the context of the current ULT,
which wants to suspend its execution, and restoring the
context of the next ULT, which will resume execution. These
two steps are usually necessary, but the first step can be
omitted if the current ULT terminates, because its context
will no longer be used. For this case, we perform only the
second part of context switching to execute the next ULT.
Since ULTs terminate immediately after they get started
in the benchmark, this technique (LastCtxSkip in Figure 4)
reduces on average 100 cycles, 45% of the Join latency from
Baseline (after the memory optimizations of Section 3.3).

Scheduler Involvement. Since the joiner ULT cannot
progress beyond the Join synchronization point until the
ULT being joined terminates, it can be blocked and directly
context switched to the next ULT to be joined, instead of
going through the scheduler. In this case, when the joinee
ULT is completed, the control is switched back to the joiner
ULT. That is, we can bypass the scheduler in Join. SchedBy-
pass in Figure 4 shows how this modification outperforms
LastCtxSkip. The improved version removes context switches
from and to the scheduler. In addition, since the joiner
ULT can check the state of the joinee ULT right after it is
terminated, its data structure is accessed only once by the
joiner ULT whereas it is touched twice in the LastCtxSkip
version by the scheduler and the joiner ULT. The effect
of this technique can be seen as lower LLC miss rates in
Figure 4. This approach does, however, have a limitation:
it can be applied only to ULTs in the same ES like the
yield to operation (Section 2.3). Although this idea is similar
to that presented in [27], the main difference between two
approaches is that the target of context switching in our
approaches is determined by the user, not the library or
kernel.

Joiner ULT Involvement. With the previous improve-
ment on Join, 2×N context switches are needed in order to
join N ULTs, because joining one ULT requires two context
switches. To further reduce the number of context switches
when joining multiple ULTs at the same time, we devised

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 6

 0

 100

 200

 300

 400

 500

 600

2
6

2
8

2
10

2
12

2
14

2
16

2
18C

re
a

ti
o

n
 L

a
te

n
c
y
 p

e
r

U
L

T
 (

c
y
c
le

s
)

Number of ULTs

Create

SharedPool
PrivatePool
NoMigration

2
6

2
8

2
10

2
12

2
14

2
16

2
18

 0

 50

 100

 150

 200

 250

J
o

in
 L

a
te

n
c
y
 p

e
r

U
L

T
 (

c
y
c
le

s
)

Join

Fig. 5: Effects of using a private pool and disabling migration.

the join many operation. This operation takes a list of ULTs
to join and enables each ULT in the list to check the state
of the next ULT and to context switch to the next one if
it has not finished. Since the join many operation does not
return to the caller until all ULTs in the list terminate and
each ULT does only one context switch to the next one,
this operation reduces the number of context switches from
2 × N to N + 1 and also decreases N Join function calls
to a single join many call. The performance effect of the
join many operation is illustrated in Figure 4 as JoinMany. It
reduces the Join latency by an average of 19 cycles from that
of SchedBypass.

3.5 Pool Sharing
All experiments so far used a shared pool, which is created
by default, even though only one ES was used. The Argobots
API exposes pool sharing control to users; a user can chose
how many ESs are allowed to push and pull from a pool. If
there is no sharing between ESs or only one ES is created,
the pool can be created as a private one, which is intended
for only sequential access and thus does not use any mutex
or atomic instructions in the implementation. Since Create
and Join include pushing a ULT to the pool and popping a
ULT from the pool, respectively, their latency is improved
with the private pool (PrivatePool in Figure 5). On the other
hand, Free is not affected by the access property of the pool
because it does not involve any pool manipulation.

3.6 Feature Selection
Not all features provided by Argobots are necessarily
needed by a user. For instance, Argobots could be packaged
into other software that requires only a subset of Argobots
features. Unused features may affect the application’s per-
formance if their related code (e.g., branches) is part of the
performance-critical path although it does nothing useful.
To address this issue, Argobots provides configuration op-
tions to disable some features, for example, migration and
stackable scheduler support. We observed that in the current
implementation, disabling migration reduced around 20
cycles in the Join latency (NoMigration in Figure 5); disabling
other features was insignificant for this benchmark.

3.7 Cost Analysis Discussion
From the preceding sections, we notice that using memory
pools is the most effective for Create and Free while all meth-
ods introduced in the preceding subsections collectively in-
fluence the performance of Join. Because of the nature of the

10
0

10
1

10
2

10
3

10
4

1 2 4 8 16 24 32 36 40 48 56 64 72C
re

a
te

/J
o
in

 T
im

e
 p

e
r

U
L
T

 (
c
y
c
le

s
)

Number of Execution Streams

Qthreads
MassiveThreads (H)
MassiveThreads (W)

Argobots (ULT, baseline + shared pools)
Argobots (ULT, baseline + private pools)

Argobots (ULT, optimized + private pools)
Argobots (Tasklet, optimized + private pools)

Fig. 6: Average create and join time per ULT with Qthreads, Mas-
siveThreads, and Argobots. The join operation includes both joining
a ULT and destroying it. MassiveThreads results include the default
work-first scheduling (W) and the help-first scheduling (H) variations.
Argobots was run with several variations to cover optimization levels,
pool-sharing properties, and work unit types (ULT or Tasklet). These
results were presented in a top-down cost-reducing order. Shared pools
in Argobots imply random work stealing.

benchmark (i.e., it is designed to exercise bulk-synchronous
ULT operations, and each ULT does nothing in its function),
cases with a small number of ULTs can be considered as
best scenarios where data structures and stacks fit in the
LLC. Those results are difficult to tie to real applications,
however, since they might not exhibit such high degrees of
cache reuse. We consider the large number of ULT runs more
insightful because there is almost no cache reuse, since the
working sets do not fit in the LLC and hence reflect a worst-
case scenario.

4 EVALUATION

We evaluated our Argobots implementation by comparing
with two ULT libraries, Qthreads 1.10 and MassiveThreads
0.95, in terms of performance and scalability in the same
environment described in Section 3.1. We chose them be-
cause they are among the best-performing lightweight
threading packages currently used in the HPC community
and are available as independent libraries. Moreover, they
have been subject to thorough studies by previous works
and compared with other lightweight runtimes [4], [5].
All libraries were compiled with -O3 -ftls-model=initial-
exec flags. The other build settings of Qthreads and Mas-
siveThreads were left as default; in particular, both libraries
maintain their own memory pools and use shared thread
pools, which are hidden from the user. Qthreads uses the
Sherwood hierarchical scheduler [28], which is locality aware
and adopts work stealing for load balancing, and Mas-
siveThreads relies on a Cilk-like last-in, first-out schedul-
ing within a worker and FIFO randomized work stealing
between workers [4].

4.1 Create/Join Time
We compared the time taken to create and join a ULT or
a tasklet with respect to the number of ESs. For Qthreads
and MassiveThreads, the number of workers was set to
the same as that for ESs; and one worker in Qthreads was
mapped to one shepherd.4 We created one ULT for each

4. The default hierarchical configuration of one shepherd per chip
and one worker per core showed worse results.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 7

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 4 8 16 24 32 36 72C
re

a
te

/J
o
in

 T
im

e
 p

e
r

U
L
T

 (
c
y
c
le

s
)

Number of Shepherds

min-max
average

(a) Qthreads

 0

 200

 400

 600

 800

 1000

 1200

1 2 4 8 16 24 32 36 72C
re

a
te

/J
o
in

 T
im

e
 p

e
r

U
L
T

 (
c
y
c
le

s
)

Number of Workers

min-max
average

(b) MassiveThreads (W)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 4 8 16 24 32 36 72C
re

a
te

/J
o
in

 T
im

e
 p

e
r

U
L
T

 (
c
y
c
le

s
)

Number of Execution Streams

min-max
average

(c) Argobots (ULT, baseline + shared
pools)

 0

 50

 100

 150

 200

 250

 300

1 2 4 8 16 24 32 36 72C
re

a
te

/J
o
in

 T
im

e
 p

e
r

U
L
T

 (
c
y
c
le

s
)

Number of Execution Streams

min-max
average

(d) Argobots (ULT, optimized + private
pools)

Fig. 7: Create/join time tolerance.

ES, and that ULT repeated 1,000 times creating 256 work
units, pushing them to the pool associated to its ES, and then
joining them. We performed the same pattern for Qthreads
and MassiveThreads.

Figure 6 illustrates the average create and join time per
ULT for each library from 10 runs of the benchmark. Since
MassiveThreads by default utilizes the work-first scheduling
policy [29] (i.e., pushes the creator to the scheduling queue
and executes the spawned thread first), while Qthreads and
Argobots adopt the help-first principle [30] (i.e., create all
threads first), we include results for both the work-first
and help-first versions of MassiveThreads. An exhaustive
exploration of all combinations of Argobots configurations
and features would be excessive; thus we narrow the space
exploration to a handful of combinations that incrementally
reduce costs: from the baseline Argobots with ULTs, shared
pools, and random work stealing, to using private pools,
using all the optimizations in Section 3, and using tasklets
instead of ULTs.

Ideally, if the ULT runtime is perfectly scalable, the time
should be the same regardless of the number of ESs. Usually,
however, that is not the case because hardware resources,
such as caches, memory, or physical CPU cores, are shared
between ESs and synchronizations might exist between ESs
to protect shared data. In this benchmark, thread pools are
the major resource being shared and thus a potential source
of contention.

At the lowest degree of concurrency (i.e., one ES),
Qthreads and the baseline Argobots perform the worst. The
Argobots optimizations bring down the cost to be competi-
tive with MassiveThreads. At the highest degree of concur-
rency (i.e., 72 ESs), all help-first scheduling runtimes that
use shared pools scale poorly. Argobots, however, performs
slightly better than the other runtimes despite not having
the optimizations enabled. MassiveThreads with work-first
scheduling performs the best in this high-contention regime,
thanks to memory optimizations and optimized thread pool
manipulation. We observe, however, that all experiments
that use shared pools with some form of work stealing
exhibit the worst scalability. While this overhead is out of the
user’s control in Qthreads and MassiveThreads, Argobots
offers means to eliminate such interference through private
pools, which results in almost perfect scalability. The slight
scalability loss starting from 40 ESs is due to hardware
threads sharing hardware resources on the same core. With
private pools in Argobots, as long as schedulers or ULTs in
different ESs do not share a pool or data, there will be almost

zero synchronization (even no atomic instructions) between
ESs. We also observe that the optimizations in Argobots
reduce the overheads by an order of magnitude and that the
tasklet abstraction brings down costs even further, making
Argobots in this case the fastest and most scalable runtime.

4.2 Create/Join Time Tolerance

We also measured the minimum, maximum, and average
time for each ULT on each ES to create and join another ULT.
The results are summarized in Figure 7. Because of space
limitations, we show only two Argobots combinations: the
baseline with shared pools and the optimized setting with
private pools. First, percentage-wise MassiveThreads shows
the highest degree of variation, followed by Qthreads and
the Argobots baseline, which are comparable, and finally by
the optimized Argobots, which shows the lowest relative
variation. Second, from an absolute variation perspective,
MassiveThreads remains the highest (up to 740 cycles),
followed closely by Qthreads and the baseline Argobots
(up to 400 cycles). The optimized Argobots with private
pools incurs the lowest variation, with less than 20 cycles
variation across the board. We conclude that Argobots is the
only runtime that can achieve both low overheads and sus-
tainable performance; that is, ESs do not interfere with each
other without explicit user-controlled interaction. Workers
in Qthreads, MassiveThreads, and ESs in Argobots with
shared pools interfere with each other; thus, the create/join
time per ULT varies significantly when multiple workers
or ESs are running, even though they do not interact at
all in the user code. These results imply that the design
of Argobots can enable users to build their higher-level
software without worrying about unnecessary interference
caused by the underlying threading runtime from a schedul-
ing perspective.

4.3 Yield Time

The yield time contributes to the ULT create/join time as
well. When a ULT tries to join a newly created ULT, it needs
to yield control to the scheduler in order to execute the new
ULT. The yield latency is also critical for applications that
require frequent context switches. We measured the yield
overhead for each library with respect to the number of ESs
and show the results in Figure 8. For Argobots, we used
the same configuration and feature combinations as in Sec-
tion 4.1 with the exception of omitting tasklet experiments
because, conceptually, a tasklet cannot yield. Since Argobots

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 8

10
0

10
1

10
2

10
3

10
4

1 2 4 8 16 24 32 36 40 48 56 64 72

Y
ie

ld
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Number of Execution Streams

Qthreads
MassiveThreads (H)
MassiveThreads (W)

Argobots (yield, baseline + shared pools)
Argobots (yield, baseline + private pools)

Argobots (yield, optimized + private pools)
Argobots (yield_to, optimized + private pools)

Fig. 8: Yield operation time.

supports the yield to operation as well as yield (Section 2.3),
we included results with the yield to operation. At low con-
currency, Qthreads incurs the highest overhead, followed by
Argobots with its normal yield interface. In this case, both
Qthreads and Argobots suffer from extra context switches
to the scheduler (called master thread in Qthreads). Mas-
siveThreads and Argobots with the yield to interface are the
fastest. These bypass the scheduler and effectively reduce
the number of context switches by twofold, which can be
observed when comparing Argobots with its yield operation
variations. At higher degrees of concurrency, we observe
similar scalability losses as in Section 4.1. In particular,
contention for the Argobots shared pools adds significant
overhead. The benefits of the Argobots optimizations are
not as pronounced as with the create and join operations,
but they are still significant. The yield to operation reduces
the overheads by a constant factor, twofold, regardless of
the number of ESs.

4.4 XSBench
XSBench [31] is a proxy application that models the calcula-
tion of macroscopic neutron cross-sections of OpenMC, a
Monte Carlo particle transport simulation code [32]. The
kernel that XSBench simulates is the most computationally
intensive part in OpenMC and takes around 85% of the total
runtime of OpenMC, according to its documentation. It is
written in the C language and is parallelized with OpenMP.

We port the main simulation part of XSBench, namely,
the cross-section lookup loop, to Argobots by dividing the
iterations of the lookup loop evenly among ESs. One ULT
(main) per ES is created, and it creates as many work units
as the number of lookups that are assigned to the ES.
Each work unit performs one cross-section lookup. Since
we noticed that the cross-section lookup code suffers from
cache misses due to its irregular memory accesses, our
Argobots version takes data locality into account, instead
of simply executing the loop iterations as done in the orig-
inal OpenMP code. We implemented a custom scheduler,
using the Argobots scheduler framework (Section 2.2), that
executes work units according to the order of the energy
indices, which are random values but critical to the memory
access pattern. Specifically, main ULTs sort the iterations
in ascending order of energy indices and push them to
their respective main pools. A scheduler then pulls and
executes work units in order, to preserve the energy indices
order for better locality. The scheduling begins after creating

a certain number (here, 8,192) of work units. Sorting all
iterations and creating work units for each iteration at once
can lead to significant overhead in the memory usage and
thus impact the performance. When its main pool is empty,
a scheduler adopts work stealing from neighbors to reduce
load imbalance and preserve data locality.

We also implemented XSBench using Qthreads and Mas-
siveThreads. However, since they do not provide the flexi-
bility of writing a user-defined scheduler as Argobots does,
we sort the energy indices before creating ULTs (note that
Qthreads and MassiveThreads do not support tasklets) and
create ULTs according to the energy indices sorted. Then,
we rely on their schedulers for the execution.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 4 8 16 32 64
S

p
e
e
d
u
p

Number of Execution Streams

Qthreads
MassiveThreads (H)
MassiveThreads (W)

Argobots (ULT)
Argobots (Tasklet)

OpenMP

Fig. 9: XSBench performance results.

Figure 9 shows performance results of our XSBench im-
plementations in Argobots, MassiveThreads with the work-
first policy, and Qthreads, along with the original OpenMP
implementation as a reference. The baseline XSBench used
is version 13, dated May 2014; and we used the “large”
input size having the default configuration of 355 nuclides,
11,303 grid points per nuclide, and 15 million lookups.
Each version was run 12 times, with 5 iterations per run
excluding warm-up steps. The figure shows the average
result per iteration. The speedups in the graph are obtained
by comparing execution times with that of the sequential
code without OpenMP pragmas. Execution times with a
single ES (OpenMP thread or worker) are 47.94 (Argobots
(Tasklet)), 49.96 (Argobots (ULT)), 47.90 (MassiveThreads (W)),
52.04 (MassiveThreads (H)), 57.24 (Qthreads), 51.14 (original
OpenMP without presorting), and 47.41 (sequential with pre-
sorting) seconds. The results in the figure show that all
implementations scale well but that Argobots (Tasklet) achieves
the best scalability. MassiveThreads (W) performs better than
MassiveThreads (H) and indicates that MassiveThreads suffers
in this case from the help-first policy, which stresses thread
pool operations and scheduling more than a work-first
policy would. Despite Argobots adopting a help-first policy,
however, it performs comparably to MassiveThreads with
its work-first policy, thanks to data locality scheduling and
better pool access performance.

5 HIGH-LEVEL RUNTIMES

We present here three use cases of Argobots for high-
level runtimes: an OpenMP runtime implementation that
integrates Argobots as the threading layer, an MPI runtime
implementation that interoperates with Argobots, and colo-
cated I/O services that utilize Argobots for better resource

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 9

management. Hyperthreading is disabled hereafter because
it did not have any positive effects on the experiments that
follow.

1 #pragma omp parallel for
2 for (int i = 0; i < N; i++) {
3 lib_comp(i, range[i], in, out);
4 }
5
6 void lib_comp(i, max , in[][], out [][]) {
7 #pragma omp parallel for
8 for (int k = 0; k < max; k++)
9 out[i][k] = compute(in[i][k]);

10 }

Listing 1: Example of OpenMP nested parallelism.

5.1 OpenMP over Argobots
OpenMP implementations, such as GCC OpenMP [33] or
Intel OpenMP [17], perform poorly with nested parallel
regions, like the case shown in Listing 1, because they use
OS-level threads underneath (e.g., Pthreads); performance
can drop significantly if the total number of OpenMP
threads used for the nested parallel regions is larger than
that of CPU cores (i.e., oversubscription). The common
workaround found in practice is to avoid oversubscription
by suppressing one level of parallelism. However, suppress-
ing parallelism may lose opportunities for performance
improvement or hinder programmers from using external
libraries that internally use OpenMP. For example, consider
Listing 1 that emulates an OpenMP user code (lines 1–
4) calling a library routine (lib_comp) that internally uses
OpenMP. Let us assume that the user uses all processing
elements of the machine for the application, as is often
the case in practice. In most production OpenMP runtimes,
both parallel regions (at lines 1 and 7) would spawn an
OpenMP team equal to the full machine size, resulting in
a 2x oversubsctiption factor. This issue could be tackled
by reducing the size of OpenMP teams. However, tuning
the size of the team in the user code as well as in external
dependencies to avoid oversubscription while fully utilizing
the machine is a daunting challenge.

We designed an OpenMP runtime that exploits Argobots
to better deal with nested parallelism. In our runtime, all
parallel regions are mapped to Argobots work units (ULTs
by default) regardless of the level of nesting. Furthermore,
creating many work units does not add much overhead as
long as the number of ESs is kept within the number of
cores. Our runtime creates at most as many ESs as there
are cores. Each ES features a customized scheduler that has
one private pool and one shared pool. The private pool is
used to schedule work units in an ES in a FIFO manner;
the shared pool is used for sharing work units between ESs.
ULTs for the first-level parallel regions are distributed to
the private pool of each ES. ULTs for the nested parallel
regions are pushed to the shared pool of the ES, where
the master ULT in the team is running, but they can be
stolen by other ESs if there is load imbalance between ESs.
This hierarchical scheduling structure enables locality to be
improved by binding the first-level ULTs to distinct ESs and
enables the workload of ESs to be balanced through work
stealing.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

2 4 8 12 16 20 24 28 32 36

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Number of Threads for the Inner Loop

GCC
IntelOMP
AbtOMP

AbtOMP with tasklet

(a) Execution time of a nested parallel for loop. The number of threads
for the outer loop was fixed at 36, and that for the inner loop was varied.
The number of iterations for both outer and inner loops was 2,240, and
static scheduling was used. GCC, IntelOMP, AbtOMP, and AbtOMP with
tasklet represent results with gcc 6.1.0, Intel compiler 17.0.0 with Intel
OpenMP runtime, the same Intel compiler with our OpenMP runtime
using only ULTs, and using ULTs for the outer loop and tasklets for the
inner loop, respectively.

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Number of Threads for Intel MKL

IntelOMP:core-close
IntelOMP:core-true

IntelOMP:no-binding
AbtOMP

(b) Execution time of the Downward stage in KIFMM with AbtOMP and
IntelOMP with different thread bindings. OMP_NUM_THREADS was set to
9, and MKL_NUM_THREADS was varied.

Fig. 10: Performance results of OpenMP nested parallel loops.

To reduce thread management overheads, our OpenMP
runtime, with a user hint, can generate tasklets for compute-
only loops, which do not contain any blocking functions call
or OpenMP synchronization (e.g., critical or barrier). In
other words, if the code has no possibility of context swit-
ching occurring during the execution, the runtime creates
tasklets instead of ULTs, since using ULTs adds unnecessary
overhead from managing contexts and stacks. We currently
provide an API function for the user to give our OpenMP
runtime a hint of whether it is compute-only or not. We
plan to develop compiler techniques so that this process is
automated and thus the advantages of tasklets can be easily
accessible. We note that while some previous work used
ULTs to overcome nested parallelism issues [28], [34]–[36],
our work exploits tasklets as well as ULTs and a custom
scheduler that is specialized for OpenMP nested parallelism.

We prototyped our OpenMP runtime by modifying the
open-source version of the Intel OpenMP runtime [37] and
kept the application binary interface so that it can be used
with existing compatible OpenMP compilers, such as Intel
compiler, GCC, and LLVM clang. We also evaluated our
implementation using one microbenchmark and a work-
sharing-based implementation of FMM [38] on the machine
described in Section 3.1.

The microbenchmark measures the execution time of a

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 10

nested parallel loop, which is similar to the code in Listing 1.
Figure 10a illustrates the average execution times over 100
runs. As expected, our OpenMP runtime outperforms other
OpenMP implementations because of using lightweight
work units. The results imply that utilizing ULTs to im-
plement parallel regions is efficient, and exploiting tasklets
further reduces the overhead when it is possible. GCC shows
the worst performance because the GCC OpenMP does
not reuse threads and instead spawns threads every time
it encounters the parallel region. IntelOMP achieves better
performance than does GCC by reusing threads, but it has
more overhead than our runtime does because of the heavy
cost of managing Pthreads and real oversubscription of the
machine.

Real-world case. We present here results with a highly
tuned implementation of the FMM, a method to solve N-
body problems, called kernel-independent FMM (KIFMM).
We used the variant that implements each of the five stages
that constitute the entire flow using OpenMP work-sharing
constructs [38]. KIFMM offloads some compute-intensive
operations, such as matrix-vector multiplications (dgemv)
and fast Fourier transformations, to external libraries. These
external packages are free to generate additional paralleliza-
tion levels that might cause nested parallelism. Here, we
focus on one of the stages (Downward) that is sensitive to
data locality and has parent-children dependencies resulting
from the hierarchical domain decomposition. It is also com-
pute intensive and relies extensively on dgemv operations
computed by linear algebra packages.

KIFMM offloads dgemv operations to the Intel Math
Kernel Library (MKL) [39] shipped as part of the Intel
complier suite. MKL also employs OpenMP internally, but
this behavior is disabled if MKL detects that it is being
called within an OpenMP parallel region. This is the default
behavior and can be overridden by the user with appropri-
ate environment variables. To evaluate the efficiency of the
nested parallelism support in IntelOMP and AbtOMP during
the Downward stage, we used 9 OpenMP threads for the
application (outer parallel region) and varied the number
of MKL threads (inner parallel region). This approach ef-
fectively allows a gradual shift from a non-oversubscribed
regime (9 threads on 36 cores) to an oversubscribed one
(72 threads on 36 cores). Figure 10b shows different trends
for the OpenMP runtimes and binding strategies. IntelOMP
clearly performs poorly as performance degrades with more
MKL threads. We note that all binding policies result in
some degree of oversubscription except when left to the
OS (no binding) with IntelOMP. AbtOMP, on the other hand,
scales slightly, then stagnates. One factor that affects both
runs is the poor data locality resulting from offloading
dgemv data to other threads that potentially run on remote
cores. A second factor is the high thread management
overhead, which includes oversubscription, of IntelOMP. We
also note that using more than one MKL thread improves
scalability over a single-threaded MKL with AbtOMP. Thus,
MKL’s default strategy of disabling nested parallelism loses
parallelism opportunities that could be exploited with an
efficient OpenMP runtime.

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

1 16 256 4096 65536

L
a

te
n

c
y
 (

u
s
)

Message Size (bytes)

ES:36 ULT:1
ES:36 ULT:2
ES:36 ULT:4
ES:36 ULT:8

ES:36 ULT:16
ES:36 ULT:32

ES:1 ULT:1

Fig. 11: MPI latency between two Haswell nodes interconnected with a
Mellanox FDR fabric. One node hosts a single-threaded sender process
while the other hosts a 36-way multi-ES receiver process.

5.2 Interoperability with MPI

Most MPI implementations interoperate with OS-level
threads, such as Pthreads, to comply with MPI’s thread-
ing support requirements. Consequently, shared-memory
programming systems, including OpenMP, whose runtimes
rely on OS-level threads underneath can interoperate with
most MPI runtimes. This coarse-grained interoperability
level is heavy, however, and does not allow exploiting
upper-layer runtime information to improve synchroniza-
tion and scheduling decisions. For instance, with existing
MPI runtimes, an OpenMP task blocked for MPI commu-
nication cannot context switch to another task; thus it loses
the opportunity to better utilize computational resources,
because these runtimes are oblivious of OpenMP tasks. If
the programming system shares a more lightweight and
flexible common runtime with MPI, new synchronization
and scheduling improvement opportunities will be exposed.

In this work, we investigated an MPI runtime that inter-
operates with Argobots ULTs instead of OS-level threads.
The runtime is based on MPICH 3.2, a fully thread-
compliant MPI implementation. MPICH 3.2 drives com-
munication through a single communication context and
ensures thread safety with a coarse-grained critical section.
The runtime has been shown to be subject to lock manage-
ment issues, which can significantly degrade performance
[40]. The major interoperability challenge is handling thread
safety. We exploit in the runtime a custom locking method
tailored for Argobots’ expressive capabilities and the needs
of the MPI runtime. Our lock has three primary components.
First, it is built on the advantages of the two-level prioritiza-
tion scheme described in our prior work [40]; ULTs that are
in a waiting state, which occurs in routines with blocking
semantics, are demoted in favor of other ULTs in order to
avoid waste and improve progress. Second, lock acquire and
release operations avoid contention on the critical path. This
feature is achieved by blocking a ULT with an unsuccessful
acquisition in a low-contention queue corresponding to the
ES and the priority level of the ULT. Third, we expose an API
routine in Argobots to allow a lightweight lock ownership
passing between ULTs in the same ES. Since such ULTs are
sequential, lock ownership can be passed with mostly a
simple context switch without an expensive fully fledged
lock release operation.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 11

To evaluate this runtime, we ran a benchmark that
stresses communication latency between two MPI processes:
a sender and a receiver. The sender issues a stream of
blocking send operations, and the receiver consumes the
messages with blocking receive operations. The sender is
single-threaded (i.e., one ULT in one ES), and the receiver is
multithreaded with Argobots. The goal of this benchmark is
to stress the capability of the receiver to keep pace with
the sender. Figure 11 shows latency results between two
Haswell nodes (Section 3.1) with 36 ESs at the receiver side
while scaling the number of ULTs per ES. We observe that
the response time of the receiver improves with the number
of ULTs per ES until saturation. A total of 288 ULTs (8
ULTs per ES) are sufficient to reach the lowest latency in
the multithreaded setting and approach the single-threaded
receiver latency. A single ULT per ES results in OS-level
threading interoperability, but such an interoperability level
is limited by the performance of the lock implementation.
The extra benefits obtained from having more UTLs per
ES can be obtained only through the interoperation of MPI
with an expressive and lightweight runtime that can reduce
synchronization costs and improve latency hiding, a feature
of great importance for emerging hybrid MPI+threads ap-
plications.

5.3 Colocated I/O Services

This section demonstrates the flexibility of Argobots when
leveraged by colocated I/O services: distributed I/O service
daemons that are deployed alongside application processes.
This service model can be used to provide dynamically
provisioned, compute-node-funded services [41], in situ
analysis and coupling services [42], or distributed access
to on-node storage devices [43]. The key challenge in this
programming model use case is that it must balance three
competing goals: programmability (i.e., ensuring that the
service itself is easy to debug and maintain), performance
for concurrent workloads, and minimal interference with
colocated applications.

The most straightforward way to utilize Argobots within
an I/O service daemon is to create a new ULT to service
each incoming I/O request. Unlike conventional OS-level
threads, ULTs are inexpensive to create and consume min-
imal resources while waiting for a blocking I/O operation.
Each ULT can cooperatively yield when appropriate so that
other ULTs (i.e., concurrent requests) can make progress,
thereby enabling a high degree of I/O operation concur-
rency with minimal resource consumption. This architecture
is designed to realize the performance advantages of an
event-driven model while retaining the programmability
advantages of a conventional thread model.

We implemented two small extension libraries to help
support this use case. The first, abt-io, provides thin wrap-
pers for common POSIX I/O function calls such as open(),
pwrite(), and close(). From the caller’s perspective, these
wrappers behave exactly like their native POSIX counter-
parts. Internally, the wrappers delegate blocking system
calls to a separate Argobots pool as shown in Figure 12.
The calling ULT is suspended while the I/O operation is
in progress, thereby allowing other service threads to make
progress until the I/O operation completes.

Pool

U

ULT

T

Tasklet

S

Scheduler

..

ESabt-io[1-n]

T

T

Pabt-io

S
snoozer

service routine:
calculation();
abt_io_open();
abt_io_pwrite();
abt_io_close();

ABT_io_open:
ABT_eventual_create();
ABT_task_create();
ABT_eventual_wait();
return; Tasklet:

open();
ABT_eventual_set();

OS

abt-io library

Written by
service developer

Executed within
calling ULT on ES

Executed within
new tasklet on

ES

1

abt-io[1-n]

SM

ES1

I/O service daemon

U

U

P1

Fig. 12: The abt-io library architecture. Conventional POSIX I/O func-
tion calls such as open() would block progress of all ULTs on an
execution stream. The abt-io library avoids this by delegating these
operations to a separately provisioned pool of execution streams,
thereby allowing the caller to yield until the operation is completed.

The delegation step is implemented by spawning a
new tasklet that coordinates with the calling ULT via an
eventual, an Argobots future-like synchronization con-
struct. The tasklets are allowed to block on system calls
because they are executing on a dedicated pool that has been
designated for that purpose. This division of responsibility
between a request servicing pool and an I/O system call
servicing pool can be thought of as a form of I/O forwarding
that allows I/O resources to be provisioned independently
without interfering with execution of the primary applica-
tion routine. This same technique could be applied to any
blocking I/O resource. If the I/O resource provides a native
asynchronous API (such as the Mercury RPC library [44]),
then one need not delegate operations to a dedicated pool;
the resource can use its normal completion notification
mechanism to signal eventuals.

The second extension library, abt-snoozer, implements an
I/O-aware Argobots scheduler that causes the ES to block
(i.e., sleep) when no work units are eligible for execution
and wake up when new work units are inserted. It therefore
exchanges a modest latency cost for the ability to idle
gracefully when ULTs are waiting for external I/O events,
which in turn minimizes interference with other tasks. The
scheduler can use the epoll() system call to block, and
the pool can write() to an eventfd() file descriptor to
notify it when new work units are added. The abt-snoozer
library uses the libev [45] event loop and asynchronous
event watchers to abstract this functionality for greater
portability. The abt-io library does not require the use of the
abt-snoozer scheduler, but it reduces resource consumption
for workloads in which the I/O pool is sometimes idle.

We implemented a synthetic I/O service daemon to
serve as a benchmark for empirical comparison of Pthreads
and Argobots. The benchmark concurrently executes multi-
ple instances of the service routine shown in Listing 2. The

1 calculation(buffer);
2 fd = open(path);
3 pwrite(fd, buffer);
4 close(fd);

Listing 2: Benchmark service routine pseudocode.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 12

 0

 10

 20

 30

 40

 50

 60

 70

12 36 60 84 108 132

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of Pthreads or ULTs running Service Routines

Pthreads
Argobots

12 36 60 84 108 132
 0

 20

 40

 60

 80

 100

 120

 140

 160

C
P

U
 U

ti
liz

a
ti
o

n
 (

s
)

U
s
e

r+
S

y
s
te

m

(a) The benchmarks use all 12 CPU cores.

 0

 10

 20

 30

 40

 50

 60

 70

12 36 60 84 108 132

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of Pthreads or ULTs running Service Routines

Pthreads
Argobots

12 36 60 84 108 132
 0

 20

 40

 60

 80

 100

 120

 140

 160

C
P

U
 U

ti
liz

a
ti
o

n
 (

s
)

U
s
e

r+
S

y
s
te

m

(b) The benchmarks are constrained to two CPU cores.

Fig. 13: Execution time and CPU utilization for a synthetic benchmark that represents the workload of a colocated I/O service.

service routine contains a sequence of computation, meta-
data, and I/O steps that are carried out to service each client
request. The calculation step in a real-world service daemon
may include checksumming, compression, or parity encod-
ing; but in the synthetic benchmark we represent it with
RAND_bytes function from libcrypto [46], which fills the
buffer with a random sequence of bytes. I/O is performed
in synchronous, direct I/O mode. In the Pthreads version of
the benchmark, a dedicated Pthread is assigned to execute
each service routine in its entirety. The Argobots version
of the benchmark differs by executing each service routine
in a ULT rather than a Pthread and using abt-io wrappers
together with the abt-snoozer scheduler to perform I/O.

We executed the benchmark on a 12-core, 2.4 GHz E5-
2620 compute node containing a pair of mirrored Seagate
ST9500620NS (500 GiB SATA) disk drives. The benchmark
was configured to execute 2,048 ULTs, with each ULT pro-
cessing 1 MiB of data. Therefore, in aggregate it produced
and wrote 2 GiB of random data.

Figure 13a shows the results of executing this experi-
ment as we vary the number of Pthreads or ULTs that are
allowed to execute simultaneously. In the Pthreads case,
the number of threads determines not only the request
servicing concurrency but also the compute concurrency
and I/O concurrency. Those three parameters cannot be
tuned independently. In the Argobots case, the number of
threads determines only the request servicing concurrency.
The ULTs are executed on a pool shared with 4 ESs (i.e., the
desired level of CPU concurrency), and the abt-io tasklets
are executed on a pool shared with 36 ESs (i.e., the desired
level of I/O concurrency) in all cases. Argobots provides
the unique ability to tune these parameters independently
without altering the actual ULT service routines.

In the left portion of Figure 13a we see that the
Pthreads and Argobots implementations achieve similar
performance. Both improve as more concurrent threads are
used, until roughly 60 threads are engaged. In the right
portion of the graph, however, we see that the Pthreads
version consumes significantly more CPU time to achieve
this level of performance. The discrepancy grows as more
threads are used, because of higher context switching cost
and OS overhead in the Pthreads implementation. This is a
key metric for I/O services that will be colocated with ap-
plications because it directly impacts how much CPU time
is available to application processes. We measured the CPU
time using the GNU time command line utility to collect

the number of CPU-seconds consumed by the benchmark
itself (“User” time) plus the CPU-seconds consumed by the
operating system on behalf of the process (“System” time).

Figure 13b shows the outcome of the same experiment
when the Linux taskset utility is used to constrain the
benchmark to use only the first 2 of 12 cores. This configura-
tion reflects a deployment scenario in which the I/O service
is pinned to dedicated cores in order to avoid interfering
with application tasks. Performance is degraded slightly
in comparison with Figure 13a, but the Pthreads variant
is more severely impacted, in some cases taking nearly 8
seconds longer to complete the benchmark. The Pthreads
implementation also continues to consume more CPU time
than the Argobots implementation does, even though the
total CPU consumption is capped by the number of cores
assigned to the service.

Overall, Argobots maintains programmability (by ex-
pressing I/O service routines as straightforward sequential
functions), achieves performance competitive with that of
Pthreads, and produces consistently lower resource con-
sumption to minimize interference with co-located applica-
tion tasks. We note that the Pthreads service implementation
could likely be optimized with a more sophisticated thread-
ing model (for example, offloading I/O work to a dedicated
thread pool). Doing so, however, would require decompos-
ing the service routines into smaller discrete event-driven
routines with disjoint stacks, a technique known as stack
ripping [10]. By maintaining a sequential control flow in
each service routine, we significantly reduce the devel-
opment, debugging, and maintenance burden for system
services [47], [48]. The Argobots model accomplishes these
tasks while also enabling fine-grained division of work,
customizable scheduling policies, and interoperability with
a variety of application programming models.

6 RELATED WORK

We discuss here related work in generic threading runtimes
and specialized ones for on-node concurrency.

In the generic runtimes category, we find several
threading and tasking packages developed as indepen-
dent libraries similar to Argobots. Some libraries, such as
GnuPth [1] and StackThreads [2], provide ULTs but only
within a single OS-level thread. Recent packages, such as
Marcel [3], MassiveThreads [4], Qthreads [5], TBB [8], and
StackThreads/MP [6], allow scheduling of ULTs on multiple
OS-level threads. MPC [9] uses ULTs to support MPI and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 13

OpenMP and provides a lightweight Pthreads interface.
While These packages are generic and often efficiently exe-
cute certain type of algorithms, such as divide-and-conquer,
they provide little control to the user. They often handle
scheduling transparently, hide thread pools from the user,
and give no control over stack and context-switch require-
ments of work units. Converse [19], which is still being used
as a ULT subsystem in Charm++ [49], inspired the design
of Argobots. It was one of the early systems to support
ULT abstraction separated from its scheduler and to support
scheduling of tasklets and ULTs via a common scheduler.
However, it lacks several features—for instance, stackable
schedulers, pluggable strategies, ULT migration, and sched-
uler bypass–and thus is less flexible than Argobots.

Several works exist in the specialized category, given
the vast possible environments that require lightweight ex-
ecution abstractions. Some operating systems provide light-
weight threading alternatives to OS-level threads, such as
Windows fibers [10] and Solaris threads [11]. Capriccio [12],
StateThreads [13], and Li and Zdancewic’s work [14] rely on
ULTs to handle concurrent network services. Maestro [15]
is the target of a high-level language compiler, and TiNy-
threads [16] is specialized to map lightweight software
threads to hardware thread units in the Cyclops64 cellular
architecture. These works, however, offer little control to the
user and are not portable outside the environments they
were meant for; we expect significant efforts will be needed
in order to make them portable and available for generic
use.

Other lightweight thread packages are tightly cou-
pled with their target parallel programming systems. The
Nanos++ runtime [18] provides ULTs that are used to im-
plement task parallelism in OmpSs [50]. The Realm run-
time [20] of Legion [51] utilizes ULTs for its event-based
tasking model. HPX-5 [52] exposes ULTs for fine-grained
execution. Lithe [53] exploits ULTs to support multiple
contexts in a single hardware thread. These threading ab-
stractions are heavily optimized for the target programming
systems. For instance, threading runtimes under OpenMP
compilers, such as Nanos++, offer means to efficiently
schedule loop iterations and tasks and to map execution
streams to processing units. They also exploit the semantics
of the programming system to avoid stack allocation and
frequently context switching (e.g., iteration loops executed
by multiple OpenMP threads without allocating a stack for
each iteration). Because of their lack of generic abstractions,
however, these runtimes are hardly usable outside the scope
of their programming systems.

From a different perspective, because of the extremely
lightweight nature of its work units and given the rich set
of capabilities that it offers, Argobots could be positioned at
the lowest level in the software stack. We provide Figure 14
as a summary. In other words, all the cited related work can
also target Argobots as their underlying runtime. Moreover,
several programming languages, such as Cilk [29], X10 [54],
Habanero-C [55], Chapel [56], Go [57], and Python [58], can
also target Argobots. Cilk, for instance, can map threads
to Argobots ULTs similar to the OpenMP example in Sec-
tion 5.1. Arguably, Argobots, unlike runtime systems such
as Realm and HPX, targets exclusively on-node concurrency
and does not address multinode execution. As exemplified

Argobots: A Low-Level Threading and Tasking Runtime

Other ULT/tasklet Models
(Converse threads, Marcel, MassiveThreads, Qthreads, ...)

Low-Level Parallel Runtimes
(Converse, Lithe, MPC, Nanos++, OCR, Realm,...)

High-Level Parallel Runtimes / Libraries / Languages
(Chapel, Cilk, Go, HC, HJ, HPX-5, OmpSs, OpenMP, TBB, X10,...)

Applications

Fig. 14: Argobots as a low-level threading and tasking runtime.

by the MPI integration in Section 5.2, however, Argobots
offers powerful abstractions to efficiently interoperate with
internode communication runtimes.

7 CONCLUSIONS

We presented Argobots, a lightweight low-level threading
and tasking framework that offers powerful capabilities
for users to allow efficient translation of high-level ab-
stractions to low-level implementations. We demonstrated
that Argobots can outperform state-of-the-art generic light-
weight threading libraries. We also presented integration of
Argobots with OpenMP and MPI, the most widely adopted
programming systems in high-performance computing, as
well as colocated I/O services. We showed that our OpenMP
runtime over Argobots handles nested parallelism better
than existing runtimes do and that an MPI runtime that
interoperates with Argobots offers more synchronization-
reducing and latency-hiding opportunities than does the
commonly adopted interoperation with Pthreads. We also
demonstrated that an I/O service with Argobots can man-
age hardware resources more efficiently and reduce inter-
ference with colocated applications better than does such a
service with Pthreads.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, under contract
number DE-AC02-06CH11357. We gratefully acknowledge
the computing resources provided and operated by the
Joint Laboratory for System Evaluation (JLSE) at Argonne
National Laboratory. This research used resources of the
Argonne Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract
DE-AC02-06CH11357. We gratefully acknowledge the com-
puting resources provided by the Laboratory Computing
Resource Center at Argonne National Laboratory. The re-
searcher from Universitat Jaume I was supported by Gener-
alitat Valenciana fellowship programme Vali+d 2015.

REFERENCES

[1] “GNU Portable Threads,” http://www.gnu.org/software/pth/.
[2] K. Taura and A. Yonezawa, “Fine-grain multithreading with mini-

mal compiler support – a cost effective approach to implementing
efficient multithreading languages,” in PLDI, 1997, pp. 320–333.

[3] S. Thibault, “A flexible thread scheduler for hierarchical multipro-
cessor machines,” in COSET, 2005.

http://www.gnu.org/software/pth/

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 14

[4] J. Nakashima and K. Taura, “MassiveThreads: A thread library for
high productivity languages,” in Concurrent Objects and Beyond,
2014, pp. 222–238.

[5] K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An API for
programming with millions of lightweight threads,” in MTAAP,
2008.

[6] K. Taura, K. Tabata, and A. Yonezawa, “StackThreads/MP: Inte-
grating futures into calling standards,” in PPPoP, 1999, pp. 60–71.

[7] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads:
Simplifying event-driven programming of memory-constrained
embedded systems,” in SenSys, 2006, pp. 29–42.

[8] “Intel threading building blocks,” https://www.
threadingbuildingblocks.org/.

[9] M. Pérache, H. Jourdren, and R. Namyst, “MPC: A unified parallel
runtime for clusters of NUMA machines,” in EuroPar, 2008, pp.
78–88.

[10] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur,
“Cooperative task management without manual stack manage-
ment,” in ATC, 2002.

[11] “Programming with Solaris threads,” https://docs.oracle.com/
cd/E19455-01/806-5257/6je9h033n/index.html.

[12] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer,
“Capriccio: Scalable threads for internet services,” in SOSP, 2003,
pp. 268–281.

[13] G. Shekhtman and M. Abbott, “State threads library for internet
applications,” http://state-threads.sourceforge.net/.

[14] P. Li and S. Zdancewic, “Combining events and threads for scal-
able network services implementation and evaluation of monadic,
application-level concurrency primitives,” in PLDI, 2007, pp. 189–
199.

[15] A. Porterfield, N. Nassar, and R. Fowler, “Multi-threaded library
for many-core systems,” in MTAAP, 2009.

[16] J. d. Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “TiNy threads: A
thread virtual machine for the Cyclops64 cellular architecture,” in
WMPP, 2005.

[17] “Intel OpenMP runtime library,” https://www.openmprtl.org/.
[18] “Nanos++,” https://pm.bsc.es/projects/nanox/.
[19] L. V. Kalé, J. Yelon, and T. Knuff, “Threads for interoperable

parallel programming,” in LCPC, 1996, pp. 534–552.
[20] S. Treichler, M. Bauer, and A. Aiken, “Realm: An event-based

low-level runtime for distributed memory architectures,” in PACT,
2014, pp. 263–276.

[21] R. S. Engelschall, “Portable multithreading - the signal stack trick
for user-space thread creation,” in ATC, 2000.

[22] “Boost.Context,” http://www.boost.org/doc/libs/1 57 0/libs/
context/.

[23] “PAPI: Performance Application Programming Interface,” http://
icl.cs.utk.edu/papi/.

[24] S. Seo, J. Kim, and J. Lee, “SFMalloc: A lock-free and mostly
synchronization-free dynamic memory allocator for manycores,”
in PACT, 2011, pp. 253–263.

[25] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson,
“Hoard: A scalable memory allocator for multithreaded applica-
tions,” in ASPLOS, 2000, pp. 117–128.

[26] “Transparent Hugepage Support,” https://www.kernel.org/doc/
Documentation/vm/transhuge.txt.

[27] K. Elphinstone and G. Heiser, “From L3 to seL4 what have we
learnt in 20 years of L4 microkernels?” in SOSP, 2013, pp. 133–
150.

[28] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, and J. F. Prins,
“Scheduling task parallelism on multi-socket multicore systems,”
in ROSS, 2011, pp. 49–56.

[29] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the Cilk-5 multithreaded language,” in PLDI, 1998, pp. 212–223.

[30] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-
first scheduling policies for async-finish task parallelism,” in
IPDPS, 2009, pp. 1–12.

[31] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “XSBench -
the development and verification of a performance abstraction for
Monte Carlo reactor analysis,” in PHYSOR, 2014.

[32] “The OpenMC Monte Carlo Code,” http://mit-crpg.github.io/
openmc/.

[33] “GOMP: An OpenMP implementation for GCC,” https://gcc.gnu.
org/projects/gomp/.

[34] Y. Tanaka, K. Taura, M. Sato, and A. Yonezawa, “Performance
evaluation of OpenMP applications with nested parallelism,” in
LCR, 2000, pp. 100–112.

[35] P. E. Hadjidoukas and V. V. Dimakopoulos, “Nested parallelism in
the OMPI OpenmP/C compiler,” in EuroPar, 2007, pp. 662–671.

[36] F. Broquedis, N. Furmento, B. Goglin, P.-A. Wacrenier, and
R. Namyst, “ForestGOMP: An efficient OpenMP environment for
NUMA architectures,” IJPP, vol. 38, no. 5, pp. 418–439, 2010.

[37] “LLVM OpenMP project,” http://openmp.llvm.org/.
[38] A. Amer, N. Maruyama, M. Pericàs, K. Taura, R. Yokota, and

S. Matsuoka, “Fork-join and data-driven execution models on
multi-core architectures: Case study of the FMM,” in ISC, 2013,
pp. 255–266.

[39] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang,
“Intel math kernel library,” in High-Performance Computing on the
Intel R© Xeon Phi, 2014, pp. 167–188.

[40] A. Amer, H. Lu, Y. Wei, P. Balaji, and S. Matsuoka, “MPI+threads:
Runtime contention and remedies,” in PPoPP, 2015, pp. 239–248.

[41] Q. Zheng, K. Ren, G. Gibson, B. W. Settlemyer, and G. Grider,
“DeltaFS: Exascale file systems scale better without dedicated
servers,” in PDSW, 2015, pp. 1–6.

[42] C. Docan, M. Parashar, and S. Klasky, “DataSpaces: An interaction
and coordination framework for coupled simulation workflows,”
in HPDC, 2010, pp. 25–36.

[43] Argonne Leadership Computing Facility, “Aurora,” http://
aurora.alcf.anl.gov/, 2016.

[44] J. Soumagne, D. Kimpe, J. Zounmevo, M. Chaarawi, Q. Koziol,
A. Afsahi, and R. Ross, “Mercury: Enabling remote procedure
call for high-performance computing,” in 2013 IEEE International
Conference on Cluster Computing (CLUSTER), Sept 2013, pp. 1–8.

[45] M. Lehmann, “libev,” http://software.schmorp.de/pkg/libev.
html, 2016.

[46] OpenSSL Software Foundation, “OpenSSL Cryptography and
SSL/TSL Tookit,” https://www.openssl.org/docs/manmaster/
crypto/crypto.html, 2016.

[47] R. von Behren, J. Condit, and E. Brewer, “Why events are a bad
idea (for high-concurrency servers),” in HotOS, 2003.

[48] D. Kimpe, P. Carns, K. Harms, J. M. Wozniak, S. Lang, and
R. Ross, “AESOP: Expressing concurrency in high-performance
system software,” in NAS, 2012, pp. 303–312.

[49] L. V. Kale and S. Krishnan, “Charm++: A portable concurrent
object oriented system based on C++,” in OOPSLA, 1993, pp. 91–
108.

[50] “The OmpSs programming model,” http://pm.bsc.es/ompss/.
[51] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Ex-

pressing locality and independence with logical regions,” in SC,
2012, pp. 66:1–66:11.

[52] CREST at Indiana University, “High Performance ParalleX (HPX-
5),” https://hpx.crest.iu.edu/.

[53] H. Pan, B. Hindman, and K. Asanović, “Composing parallel
software efficiently with lithe,” in PLDI, 2010, pp. 376–387.

[54] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An object-oriented
approach to non-uniform cluster computing,” in OOPSLA, 2005,
pp. 519–538.

[55] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave, M. Chabbi,
M. Grossman, V. Sarkar, and Y. Yan, “Integrating asynchronous
task parallelism with MPI,” in IPDPS, 2013, pp. 712–725.

[56] B. L. Chamberlain, D. Callahan, and H. Zima, “Parallel pro-
grammability and the Chapel language,” IJHPCA, vol. 21, no. 3,
pp. 291–312, 2007.

[57] F. Schmager, N. Cameron, and J. Noble, “GoHotDraw: Evalu-
ating the Go programming language with design patterns,” in
PLATEAU, 2010, pp. 10:1–10:6.

[58] “Stackless Python,” http://www.stackless.com.

https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://state-threads.sourceforge.net/
https://www.openmprtl.org/
https://pm.bsc.es/projects/nanox/
http://www.boost.org/doc/libs/1_57_0/libs/context/
http://www.boost.org/doc/libs/1_57_0/libs/context/
http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
http://mit-crpg.github.io/openmc/
http://mit-crpg.github.io/openmc/
https://gcc.gnu.org/projects/gomp/
https://gcc.gnu.org/projects/gomp/
http://openmp.llvm.org/
http://aurora.alcf.anl.gov/
http://aurora.alcf.anl.gov/
http://software.schmorp.de/pkg/libev.html
http://software.schmorp.de/pkg/libev.html
https://www.openssl.org/docs/manmaster/crypto/crypto.html
https://www.openssl.org/docs/manmaster/crypto/crypto.html
http://pm.bsc.es/ompss/
http://www.stackless.com

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 15

Sangmin Seo is an assistant computer scientist in the Mathematics
and Computer Science Division at Argonne National Laboratory. He
received his B.S. degree in computer science and engineering and his
Ph.D. degree in electrical engineering and computer science from Seoul
National University in 2007 and 2013, respectively.

Abdelhalim Amer is a postdoctoral appointee in the Mathematics
and Computer Science Division at Argonne National Laboratory. His
research falls generally under the parallel and distributed computing
landscape.

Pavan Balaji is a computer scientist at Argonne National Laboratory,
a fellow of the Northwestern-Argonne Institute of Science and Engi-
neering at Northwestern University, and a fellow of the Computation
Institute at the University of Chicago. He leads the programming models
and runtime systems group at Argonne. His research interests include
parallel programming models and runtime systems for communication
and I/O on extreme-scale supercomputing systems, modern system
architecture, cloud computing systems, data-intensive computing, and
big data science.

Cyril Bordage is a postdoctoral researcher in the team Tadaam at Inria
Bordeaux Sud-Ouest in France. He received his M.Sc. degree in 2009
and his Ph.D. degree in 2013 in computer science from the University of
Bordeaux.

George Bosilca is a research director and adjunct assistant profes-
sor at the Innovative Computing Laboratory at the University of Ten-
nessee, Knoxville. His research interests evolve around the concepts
of distributed algorithms, parallel programming paradigms, and software
resilience, from both a theoretical and practical perspective.

Alex Brooks is a Ph.D. candidate at the University of Illinois at Urbana-
Champaign. He received his B.A. degree in computer science and
mathematics from Monmouth College in 2013. His current research
interests include parallel programming models, hardware acceleration,
and threading/communication interoperability.

Philip Carns is a principal software development specialist in the Math-
ematics and Computer Science Division at Argonne National Labora-
tory, a fellow of the Northwestern-Argonne Institute for Science and
Engineering, and an adjunct associate professor of electrical and com-
puter engineering at Clemson University. He received his Ph.D. degree
in electrical and computer engineering from Clemson University in 2005.

Adrián Castelló is a Ph.D. student in the Departamento de Ingenierı́a
y Ciencia de los Computadores at Universitat Jaume I de Castelló.
He received his B.S. degree in computer science and M.S. degree in
advanced computer systems from Universitat Jaume I in 2009 and 2011,
respectively.

Damien Genet is a postdoctoral researcher at the Innovative Computing
Laboratory at the University of Tennessee, Knoxville. He received his
Ph.D. degree in 2014 from the University of Bordeaux, France. His focus
is on parallel programming paradigms for distributed applications.

Thomas Herault is a research scientist at the Innovative Computing
Laboratory at the University of Tennessee, Knoxville. He received his
Ph.D. degree from the University of Paris XI, France in 2003. His
research interests include fault tolerance, performance modelings, and
programming models for distributed algorithms with emphasis on HPC.

Shintaro Iwasaki Shintaro Iwasaki is a Ph.D. candidate at the University
of Tokyo in Japan. He received his B.S. and M.S. degrees from the
University of Tokyo in 2015 and 2017, respectively. His current research
interests include parallel languages, compilers, runtime systems, and
scheduling techniques.

Prateek Jindal received his Ph.D. degree in computer science from the
University of Illinois at Urbana-Chanpaign in 2013. Then he worked on
big data technologies as a software engineer in Yahoo. Subsequently,
he joined UIUC as a postdoc where he contributed to the research
mentioned in this paper.

Laxmikant V. Kalé received his B.Tech. degree in electronics engineer-
ing from Benares Hindu University, India, in 1977; his M.E. degree in
computer science from the Indian Institute of Science in Bangalore,
India, in 1979; and the his Ph.D. degree in computer science from
the State University of New York, Stony Brook, in 1985. He is a full
professor at the the University of Illinois at Urbana-Champaign. His
current research interests include parallel computing. He is a fellow of
the IEEE.

Sriram Krishnamoorthy is a research scientist and the System Soft-
ware and Applications Team Leader in PNNL’s High Performance Com-
puting group. His research interests include parallel programming mod-
els, fault tolerance, and compile-time/runtime optimizations for high-
performance computing.

Jonathan Lifflander is a research staff at Sandia National Laboratories.
He received his PhD degree from the University of Illinois at Urbana-
Champaign in 2016.

Huiwei Lu is a senior software engineer at Tencent. He was a postdoc-
toral appointee in the Mathematics and Computer Science Division at
Argonne National Laboratory in 2015. He received his MS and Ph.D.
degrees in Computer Architecture from Institute of Computing Technol-
ogy in 2013.

Esteban Meneses leads the Advanced Computing Laboratory at the
Costa Rica National High Technology Center. He also holds a partial
appointment at the Costa Rica Institute of Technology. His research
interests include fault tolerance and programming models for high-
performance computing.

Marc Snir is Michael Faiman Professor in the Department of Computer
Science at the University of Illinois at Urbana-Champaign. He is an
AAAS Fellow, ACM Fellow, and IEEE Fellow. He has an Erdos number 2
and is a mathematical descendant of Jacques Salomon Hadamard. He
recently won the IEEE Award for Excellence in Scalable Computing and
the IEEE Seymour Cray Computer Engineering Award.

Yanhua Sun is currently a software engineer working at Google Inc.
She received her Ph.D. degree from the University of Illinois at Urbana-
Champaign in 2015. Her research interests include parallel program-
ming models, communication optimization, parallel runtime adaptivity,
parallel performance analysis and tuning, and molecular dynamics ap-
plications.

Kenjiro Taura is an associate professor at the Department of Informa-
tion and Communication Engineering, University of Tokyo. He received
his B.S., M.S., and D.Sc. degrees from the University of Tokyo in
1992, 1994, and 1997, respectively. His major research interests are
centered on parallel/distributed computing and programming languages.
His expertise includes efficient dynamic load balancing, parallel and dis-
tributed garbage collection, and parallel/distributed workflow systems.
He is a member of ACM and IEEE.

Pete Beckman is the co-director of the Northwestern University / Ar-
gonne Institute for Science and Engineering (NAISE). He leads the
Extreme Computing group at Argonne National Laboratory.

	Introduction
	Design and Implementation of Argobots
	Execution Model
	Scheduler
	Primitive Operations
	Implementation

	Critical Path Cost Analysis
	Experimental Setup
	Baseline and Benchmark Description
	Memory Management
	Context Switching
	Pool Sharing
	Feature Selection
	Cost Analysis Discussion

	Evaluation
	Create/Join Time
	Create/Join Time Tolerance
	Yield Time
	XSBench

	High-Level Runtimes
	OpenMP over Argobots
	Interoperability with MPI
	Colocated I/O Services

	Related Work
	Conclusions
	References
	Biographies
	Sangmin Seo
	Abdelhalim Amer
	Pavan Balaji
	Cyril Bordage
	George Bosilca
	Alex Brooks
	Philip Carns
	Adrián Castelló
	Damien Genet
	Thomas Herault
	Shintaro Iwasaki
	Prateek Jindal
	Laxmikant V. Kalé
	Sriram Krishnamoorthy
	Jonathan Lifflander
	Huiwei Lu
	Esteban Meneses
	Marc Snir
	Yanhua Sun
	Kenjiro Taura
	Pete Beckman

